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Abstract—For many years now, understanding the brain mech-
anism has been a great research subject in many different fields.
Brain signal processing and especially electroencephalogram
(EEG) has recently known a growing interest both in academia
and industry. One of the main examples is the increasing number
of Brain-Computer Interfaces (BCI) aiming to link brains and
computers. In this paper, we present a novel framework allowing
us to retrieve the attention state, i.e degree of attention given to
a specific task, from EEG signals. While previous methods often
consider the spatial relationship in EEG through electrodes and
process them in recurrent or convolutional based architecture, we
propose here to also exploit the spatial and temporal information
with a transformer-based network that has already shown its
supremacy in many machine-learning (ML) related studies, e.g.
machine translation. In addition to this novel architecture, an
extensive study on the feature extraction methods, frequential
bands and temporal windows length has also been carried
out. The proposed network has been trained and validated on
two public datasets and achieves higher results compared to
state-of-the-art models. As well as proposing better results, the
framework could be used in real applications, e.g. Attention
Deficit Hyperactivity Disorder (ADHD) symptoms or vigilance
during a driving assessment.

I. INTRODUCTION

Nowadays, deep learning (DL) and other ML algorithms
have known a huge increase in interest that has led to
improvements in several scientific fields. Different domains
have benefited from ML researches such as natural language
processing (NLP), computer vision, speech recognition or
understanding. However, another field where the use of DL
remains elusive is brain imaging, the goal of these models
being to help to better understand the mechanism within the
brain. The considered signals can represent the brain matter
composition with magnetic resonance imaging (MRI) [1] or
the electrical activity of its neurons with EEG [2]. The goal
of the model considering EEG are to evaluate human cognitive
faculties to have a better understanding of brain function.

Recent works propose to consider electrophysiological sig-
nals and especially EEG to estimate the attentional state of
participant [3]–[6], i.e. a metric expressing the ability of an
individual to be concentrate on a given task. The purposes of
these researches are wide and could help in various fields:
medical, entertainment, road safety or marketing. The pro-
posed approaches consider the use of ML models that have
already shown outperforming results in other fields: fully-
connected neural networks [7], convolutional neural networks

(CNN) [6], recurrent neural networks (RNN) [3] or com-
binations of these last. Moreover, the models can consider
extracted features from EEG [5] or preprocessed EEG directly
[6].

Although these works present promising results, they tend
to ignore some of the sequential relationships governing EEG
signals. This sequential relationship being modelled in the
temporal (EEG signals can be considered as a set of time
series), spatial (EEG are recorded in several locations of the
participant scalp) and frequential (EEG can be filtered in
different frequency bands each of them being responsible for
human behaviour).

In this context, due to the encouraging results of the
novel techniques aiming to improve the analysis of sequential
information: written sentences [8] or speech segments [9], it
has been thought to merge this advanced to improve participant
attention estimation from EEG. Our approach is based on
the self-attention transformer encoder layers [10] allowing us
to combine information from a non-neighbour element in a
sequential signal which was not the case with conventional
RNN as reported in [11]. Transformer based model can auto-
matically process the sequential information from frequential
bands, temporal windows or electrode location. In this work,
feature matrices have been extracted from EEG data and repre-
sented in a 3D frame with three specific dimensions: temporal,
spatial and frequential. This novel matrices representation is
specially dedicated to our transformer architecture and aims to
estimate attention state. The contributions of this work are the
following: 1) creating transformer-inspired architecture suiting
with EEG; 2) developing a three-stream network aiming to
estimate attention state; 3) assessing the effect of frequential
bands, temporal windows length and electrodes location; 4)
finally, proposing a method that presents encouraging results
exceeding the state-of-the-art approaches; 5) making extensive
analysis of the feature extraction methods.

II. RELATED WORK

During the last decade several research projects consider-
ing EEG signals have been completed. These last use ML
algorithms for different estimation [7], [12]–[17]. One of the
specific subset of models consider the use EEG to retrieve
the attentional or vigilance state of participants, i.e. focus vs.
distract [7], [18], [19].



Commonly, the first step consists of the preprocessing
corresponding to band-pass filtering with or without ocular
artefacts removing methodology. After, feature extraction often
consists to frequential feature extraction [5], [12], [15], [20].
However, some research projects proposed also an approach
based on an automatic feature extraction methodology made
with other DL models, i.e. deep-autoencoder [21], or with
larger DL architecture to automatically extract features for
classification/regression [14]. Although this method is mainly
employed in many other fields, it remains difficult to consider
EEG processing without a handcrafted feature extraction step
due to the signals’ nature and the relatively small size of the
public datasets. Most of the proposed approaches consider
frequential based feature extraction methods to process EEG,
however, other methods reflecting different signal properties
can also be considered: signal’s disorder with fractal dimen-
sion [22], temporal domain properties [23], [24].

From the computed feature arrays, it exists many represen-
tations based on methods originally dedicated to other tasks
that have been adapted to EEG, e.g. image [15], [25] or graph
[13]. The proposed representation in this paper will take into
account the interdependence that exists among EEG signals in
the spectral, temporal and spatial domains.

One of the main challenges this paper aims to tackle is
the management of the sequential aspect of the considered
inputs, i.e. considering the best ML-based approach to benefit
from the relationship among input signals. In particular, this
challenge is to find the best way to express the spatial (through
electrodes), frequential (through frequential bands) and tem-
poral (through the signal’s temporal evolution) relationship
between EEG signals. Among the existing work, different
methodologies have been proposed to solve these issues but
often consider only the spatial information, i.e. how to organise
the information to consider electrodes positions on the scalp:

• Recurrent Neural Networks (incl. LSTM and GRU) that
process spatial information in a unidirectional pathway.
It is then necessary to consider one RNN for each direc-
tion (EEG spatial relationship being in two dimensions).
Moreover, these models aim to estimate the recurrence
in the sequential information, in the case of longer
sequences the relationship between elements too far apart
may not be taken into account [11].

• Convolutional Neural Network can be used to model the
spatial [26], [27] by considering a 2D representation of
EEG feature matrices [26]. An improved method aims to
take into account the position of the electrodes by creating
an image based on the interpolation of the location of the
electrodes in the 3D frame [15], [25]. Another approach
consists to extract temporal information from raw signals
in the temporal and spatial domain by considering two-
dimensions kernels [14].

• Graph neural networks are a type of neural network
that considers inputs as a graph. In the context of EEG,
each electrode is considered as a node and the edges are
proportional to the distances between them [13].

It is important to note that the above-mentioned ap-
proaches are not necessarily implemented straightforwardly.
Some works proposed a different approach consisting of
concatenation or parallelized models. On the other hand, it
exists methodologies considering a novel approach to improve
the baseline results. For instance, by considering images-based
EEG with CNN but with the help of self-attention mechanism
on the spatial and temporal stream to increase the classification
accuracy [26].

Although several already presented approaches show high
accuracy for EEG classification/regression in most of the
cases they only consider an interpolated or uni-dimensional
relationship between sequential information. For this reason,
it has been thought to consider a novel approach for attention
estimation by considering the sequential aspects in three
directions: spatial, temporal and frequential.

III. PROPOSED METHOD

In this paper, we proposed an innovative model aiming to
estimate the attention state from EEG. The proposed approach
to estimate attention is inspired by the transformer encoder
from self-attention based model [10]. The motivations behind
the use of this kind of model are justified by their ability to
extract sequential information from different modalities [8]–
[10]. The proposed pipeline is separated into four steps: sig-
nals preprocessing, segmentation and representation; features
extraction; modalities classification.

The preprocessing step follows the general recommenda-
tions for reproducible EEG research [28]. The EEG dataset
can be considered as a set of segmented signals Xr = [Sr

1 ,
Sr
2 , . . . , S

r
C ] ∈ RC×T with C and T representing respectively

the amount of electrodes on EEG recorder and the length
of the signal. A bandpass filtering has been applied on each
segment between 0.5 and 50 Hz. The lower band removes the
continuous contribution and detrends the signals, the higher
band removing electrical artefacts oscillating at 50 Hz and a
part of the muscular artefacts. An FIR filter with a Hanning
window of 1-second has been considered for bandpass filter-
ing. Another removing artefact methodology consisting of a
manual removing signals by visual inspection and the use of
the Automatic Artefact Removal (AAR) plug-in from EEGLab
[29] has been applied to remove the remaining ocular and
muscular artefacts in Xr. This step is repeated for each trial
and electrode, the preprocessed dataset can be reformulated as
a matrix of dimension [ntrials×C×T ] with ntrials being the
number of trials during the total acquisition.

On the other hand, to compare signals corresponding to a
high/low attention state, it is necessary to compute a label
representing this feature. For this purpose, one physiological
measurement correlated with the attention state have been
considered: the reaction time during sustained-attention task,
i.e. the time taken by a participant to react to a stimulus
has been recorded. We consider the median for all the trials
participants dependent (trials corresponding to the participant)
and independent (all the trials). Then, a threshold is deduced
for each participant by computing the mean between the



median participant dependent and independent. Finally, in
a trial corresponding to a physiological measurement above
(resp. below), the threshold is considered as a low (resp. high)
attention state. A binary class is then assigned to each trial.

As spectral information plays an important role in attention
estimation [3], [5], it has been though to filter the signals into
several frequency intervals, the latter may be physiologically
pre-defined frequency bands (i.e. δ, θ, . . . bands) or regular
spectrum decomposition between 0 and the cut-off frequency.
Finally, the preprocessed EEG dataset is re-expressed by
considering the band filtering as a set of signal Xr

f = [Sr
1,f ,

Sr
2,f , . . . , S

r
C,f ] ∈ RF×C×T with Sr

i,j being the EEG segment
of i-th channel and j-th frequency band and F being the
amount of considered frequential bands. The filtering being
made with same filter parameters.

After separating EEG into frequential contributions, EEG
segments have been segmented into time windows. The goal
of this segmentation is to capture the information from the
signal’s temporal evolution during task processing. Studies
have shown that specific patterns occur in EEG during the
sight of a stimulus [14]. The novel signal representation is
Xt

f = [St
1,f , S

t
2,f , . . . , S

t
C,f ] ∈ RF ×C×T ′× T

T ′ with T ′ being
the amount of temporal window, the length of the segment
after the temporal segmentation is T

T ′ .
Then, from Xt

f , feature are extracted to express the signal
in a shorter subspace. In the context of attention estima-
tion, different feature extraction methods have already been
considered each of them considering specific signals’ aspect:
Differential Entropy (DE) [20]; Fisher Information (FI) [30];
Hjorth parameters [23]; Petrosian Fractal Dimension [31];
Teager Energy [32].

Finally, from the feature matrice F ∈ RF ×C ×T ′

×nfeat , it is possible to consider its representation as a
sequence in three dimensions: frequential, temporal and spa-
tial. The frequential direction takes into account the sig-
nal evolution among the considered frequential bands. The
spatial direction represents the electrodes based relationship
between features information and depends on the order in
which the electrodes are sorted. Finally, the temporal di-
mension expresses the time-based evolution of each fea-
ture vector. Practically, this representation can be expressed
considering each of this dimension, after transposing and
merging axes, the resulting representation can be expressed
as: EEG|frequency ∈ RF×nfeat−freq , EEG|temporal ∈
RT ′×nfeat−temp , EEG|spatial ∈ RC×nfeat−spat .

The feature dimension for each of these three representa-
tions is deduced from the reshaped dimension of the feature
matrice F . The interest of this representation is that it permits
to have a sequential representation of information considering
each stream (i.e. frequential, temporal and spatial) separately.
Moreover, this representation allows not to lose information or
limit biases, unlike for instance the image-based representation
that considers an interpolation of a feature map.

It exists several DL based algorithms to estimate modalities
from this particular representation of information [33]. In this
paper, an adapted version of the encoder layers from the

Fig. 1: Overview of the proposed architecture for attention es-
timation. The three representations of the EEG features arrays
are passed to the correspond transformer encoder stream. Then
the outputs are decoded and concatenated to create an hidden
vectors passed to a fully-connected networks to estimate the
attention state.

transformer architecture [10] is proposed. This architecture is
composed of different blocs each of them being responsible
for a specific aspect. If we consider the input feature matrix
F representing the sequential information in one of the three
dimensions as explained in the previous subsection, the esti-
mated class ŷ is computed after the following steps:

• Embedding aiming to have a continuous representation
of the feature in a vector of lower dimension;

• Positional encoding allowing to add information about the
element position in the sequence given that self-attention
mechanism providing not information about recurrence
in the sequence (unless RNN).

• Transformer encoder applying attention mechanism on all
the previous elements composing the sequence resulting
in a hidden representation of the input embedded vector.

• Adapted transformer decoder consisting of a feed-forward
network (FFN) applied on the hidden vectors resulting
from the encoder. A second FFN merges these vectors
to provide a single representation for each sub-model
corresponding to signal representation as seen in Fig 1.

• Finally, the resulting three vectors are concatenated and
passed through a FFN aiming to estimate attention state.

The proposed architecture aims to estimate attention state
from feature arrays computed from EEG. The goal of the
training phase is to find the correct value for each trainable
parameter to make the correct estimation. The considered loss
consists of a categorical cross-entropy.

IV. EXPERIMENTS

In this section, we describe the considered datasets and
models in this paper, as well as the settings and parameters
for attention estimation from EEG.

A. Datasets

In our experiments, two different datasets of EEG signals
have been considered: PhyDAA [3] and Driving EEG [4].
Their goal is to proposed segmented signals corresponding
to a specific attention state. The methodology employed to
assess attention state is based on the registration of the reaction



Approach Driving EEG [4] PhyDAA [3]
ACC/STD [%] ACC/STD [%]

TCA + LR [18] 72.70/9.42 -
MIDA [19] 73.01/9.17 -

Graph Network [3] - 72.41/5.51
SVM∗ 68.09/9.55 64.61/9.22
RF∗ 67.81/10.17 61.55/9.79

RNN∗ 72.12/8.27 70.86/9.82
ResNet∗ 62.07/6.20 66.82/5.21

Transformer∗ 74.41/9.27 77.24/6.11

TABLE I: Classification performance of the different methods
considering participant independent cross-validation, i.e. with
leave one subject out cross-validation accuracy. * denotes the
results obtained from our models experiments.

time to specific stimuli. These stimuli can be represented by a
balloon appearing inside of virtual reality (VR) environments
[3] or by steering angle modification of a car during a driving
task [4]. PhyDAA dataset proposed an experiment during
which participants are asked to react as fast as possible
to a specific stimulus. The reaction is measured with the
direction of the eyes, it corresponds to the time elapsed to
direct the sight toward the stimuli. 32 participants took part
in the 15 minutes length experiments. Driving EEG dataset
consists of an attention assessment during driving task [4].
This dataset proposes a task in VR environment representing
a car driving task, during which it is asked to react as fast as
possible to perturbators corresponding to the deviation of the
car trajectory. The time taken to correct the steering angle is
jointly measured. 27 participants took part in the 90 minutes
experiment.

The 32 electrodes have been placed following the 10/20
disposition for both datasets and registered at a sampling
frequency of 500 Hz. The steps already presented in the third
section have been applied to extract the feature and split
the feature arrays in each of the three directions (frequency,
temporal and spatial). To investigate the effect of frequential
bands and temporal windows, it has been decided to divide the
samples into [1, 4, 10, 20] temporal windows and have been
filtered in [1, 5, 20, 50] frequential bands1.

B. Settings

The model evaluates with subject dependent and indepen-
dent has been configured with the same parameters. The cho-
sen dimensions were respectively equal to F = [1, 5, 20, 50],
T ′ = [1, 4, 10, 20] and C = 32 for each of the three
dimensions. The transformer encoder part of the architecture
is composed of two transformer encoder layers each of them
composed of four heads in the multi-attention model part [10].
The chosen dimension for the embedded representation and
the dimension of the self-attention matrices is equal to 64
and 128. The training has been made considering a stochastic
gradient descent (SGD) optimizer with a scheduled learning
rate beginning at 1e − 2 with γ = 0.99. The batch size and

1The computed value for the lengths of both windows have been chosen
after a preliminary study.

number of epochs are respectively 32 and 250. The model
has been implemented using Pytorch library and the training
has been made on one Nvidia Titan RTX GPU. For sake of
reproducibility, the model’s implementation and the codes used
for the preprocessing are freely available on github2.

V. RESULTS

In this section, we discuss the results achieved to retrieve
the attention state. A comparison with other methodology, a
study of the different chosen parameters, the activation maps
resulting and an ablation study has been performed.

A. Comparison of deep learning models

To evaluate the proposed methodology, the architecture has
been trained and validated with two different datasets. Two
training methodologies aiming to assess the model faculty to
generalise have been considered in this paper: 1) Subject-
Independent classification, where the model is trained with
all the participant signals except one that is used for the
validation and the step is repeated for all subjects and a
mean cross-validation accuracy and its standard deviation is
computed. The benefit of this method is to measure the model
ability to generalise its knowledge to never met participants;
2) Subject-dependent classification where the model is trained
and validated with the same participant following a regular 5-
fold cross-validation, the process is repeated for each partici-
pant and the mean and standard deviation of cross-validation
accuracy are computed. The advantages of this method are
that it gives a good insight into the model ability to make
estimations with fewer signals.

It was also thought to consider the comparison with the dif-
ferent methodology aiming to estimate attention from feature
matrices constructed from EEG signals. Among the existing
ML models, four have been considered:

• Traditional ML models: Random Forest (RF) and Sup-
port Vector Machine (SVM) based classifier to define a
baseline result for attention estimation.

• RNN based approach consists of the transformer-based
approach represented in Figure 1 where the transformer
encoder layers are replaced by RNN for each stream.

2https://github.com/VDelv/Spatio-Temporal-EEG-Analysis

Approach Driving EEG [4] PhyDAA [3]
ACC/STD [%] ACC/STD [%]

MLP [7] 81.32/6.02 -
Graph Network [3] - 77.34/10.24

SVM∗ 76.07/9.65 70.82/13.25
RF∗ 75.60/8.76 75.63/12.89

RNN∗ 80.03/8.09 79.64/10.55
ResNet∗ 75.96/8.98 70.39/6.91

Transformer∗ 83.31/6.71 85.04/7.56

TABLE II: Classification performance of the different methods
considering participant dependent cross-validation. * denotes
the results obtained from our models experiments.

https://github.com/VDelv/Spatio-Temporal-EEG-Analysis


Fig. 2: Mean cross-validation accuracy in function of the
feature extraction methods (above); the amount of temporal
windows and frequential bands (below).

• CNN approach based on an image-based representation
of the EEG feature map. Then the images are passed
through a resnet architecture [34].

As seen in Tables I and II, results acquired from the
transformer-based approach present the highest accuracy com-
pared to other baseline approaches for both datasets that
demonstrate the proposed framework’s ability to estimate
attention from EEG. More, it shows the efficiency of self-
attention based models architecture to process sequential sig-
nals.

Furthermore, results from previous works have also been
compared to evaluate the proposed methodology. For the first
dataset, the specificity of the previous approach is based on a
transfer learning approach to increase cross-subject accuracy.
These last are based on Transfer Component Analysis (TCA)
or Maximum Independence Domain Adaptation (MIDA) with
traditional ML architecture that may cause an accuracy decay
compared to the more complex methods. As seen in Tables I
and II the results from our experiments from traditional ML
approaches, i.e. SVM and RF, are lower compared to other DL
methods. It makes us think that considering a more complex
training methodology, including transfer learning, may lead to
an increase in the transformer accuracy, although its accuracy
is outperforming the state-of-the-art models.

For the second dataset, the best results from the related
works are based on Graph Convolution Network (GCN). Its
architecture is composed of graph convolution and a pooling
operation aiming to keep only the most discriminant elec-
trodes. Unlike the transformer, GCN only considers the spatial
stream to estimate attention from EEG. This may explain the
lower results.

B. Feature parametetrs analysis

As mentioned in Section III, different feature extraction
methods and segmentation parameters have been considered.

In this section, we present the corresponding cross-validation
accuracy for each combination. In Figure 2, the feature extrac-
tion methods present cross-validation accuracy around similar
range of value ≈ 70%. As shown, Hjorth, TE, PSD and
DE present the best results. Moreover, the two best feature
extraction methods: Hjorth parameters and TE based operator,
consider both the signals’ derivative that corroborates the fact
that the derivative play an important role in the attention
estimation from EEG.

As seen, the amount of both time windows and frequency
bands play an important role in attention estimation. As seen in
Figure 2, for both number of temporal windows and frequential
bands a too small number of time windows/frequency bands
leads to a decrease of accuracy. This decay can be caused by
the difficulty of representing the evolution of the brain activity
during the stimuli apparition or among the spectrum. More, a
too large number can lead to a decrease in accuracy due to
overfitting issues.

The medium values present the higher results temporal and
spectral parameters. More precisely, better results are proposed
for regularly cut bands (i.e. with 20 for #Frequency Bands)
compared to pre-defined bands (i.e. with 5 for #Frequency
Bands). This can be explained by the fact that some popu-
lations do not present the same bands limits the pre-defined
[35], [36].

C. Ablation studies

In addition to the comparison based on the considered archi-
tecture or signal parameters, it has been thought to consider
a comparison aiming to investigate the contribution of each
stream. For this purpose four different architectures have been
considered: 1). the original approach as described in section
III considering the concatenation of the three streams; 2).
frequential; 3) temporal; 4) spatial based transformer stream
standalone. The experimental results from these four different
approaches are listed in Figure 3. As seen, in both of the
cases and datasets, the best results were noted for the approach
considering the information from the three directions. This
observation corroborates the fact that considering all the
available information is the best approach to estimate attention
from EEG.

The best results for a single direction based approach were
acquired by considering only the spatial stream. The tem-
poral based approach presented slightly lower results. These
findings may be explained by the fact that the spatial, i.e.
electrodes-based, and temporal information have played an
important role in the attention estimation. The activation areas
deduced from EEG are considered as a good biomarker for
behaviour/movements estimation [37], which may explain the
high accuracy provided by spatial information. The importance
of the temporal information and the resulting scores are
explained by the nature of the signals composing the datasets.
In both of them, each segment can be considered as Event-
related potentials (ERP), i.e. the brain response resulting from
a stimulus [38] and present a specific pattern. In the context
of this experiment, stimuli apparition is fixed at t = 1 second,



(a) Subject Independent. (b) Subject Dependent.

Fig. 3: Ablation study for the transformer models. The left
(resp. right) figure correspond to the subject independent (resp.
dependent) mean cross-validation. The bars colour correspond
to the considered datasets with each bar corresponding to a
stream.

however, ERP may appear at different instants depending on
the attention state. The frequential based approach acquired
the lowest accuracy for both dataset and training methods
as mentioned in Figure 3. The consideration of this stream
is motivated by the fact that previous works mentioned the
importance of frequential information to retrieve attention
state, and especially the middle bands [39]. Poorer results can
be expressed by the redundancy of the spectral information
already extracted during feature extraction.

D. Activity maps analysis

To investigate the contribution of each stream, it has
been thought to analyze the activity maps generated by the
transformer-encoder. For this purpose we consider the L2

norm of each output sequence from transformer encoder for
each stream, i.e. Si|freq, Si|temp, Si|spatial as shown in Figure
1. This process has been made during the training of the
three-stream model training and the weight have been frozen.
After considering the norm of every sequence, they have been
normalized to study their contribution.

In Figure 4, the activity map resulting for the spectral stream
is displayed. As seen, three frequential areas emerge from
the activity spectrum. First, the sparsity of the high-frequency
contribution (i.e. > 25 Hz) and their irregularity among the
area makes the author think that they are caused by the
remaining artefacts from muscular activity that have not been
removed from the pre-processing step but can be correlated
with attention state as it has already been proven [40]. The
two other spectral bands with high activity superposed with
the physiologically defined frequency bands θ, α and β that
are often used for attention estimation [18], [19], [35]. More,
the behaviour related to the task proceeds by the participant is
related to the theoretically defined behaviour by this frequency
bands [41] that corroborates these insights.

As seen in Figure 4, the most salient instant during the
trial is between 1 and 2.75 seconds with higher importance
between 1 and 2 second that corresponds to the instant directly
following the stimulus apparition. This period seems therefore
important to distinguish high/low attention segments.

Fig. 4: Activation map in function of attention state clas-
sification of the hidden representation of the corresponding
representation: Top - Spectral; Middle - Temporal; Bottom
- Spatial. These maps have been normalized to reflect the
contribution of each temporal windows.

At the bottom of Figure 4, the most salient EEG-based
region are displayed. First, a casi symmetry is observed
between the two hemispheres that make it possible to reject
an electrode misplacement or mis-conduction due to the spe-
cific registration conditions. More significantly, two different
regions stand out from the spatial activity: frontal and parietal
regions from electrodes placements. In addition to being one
of the most salient electrodes regions for attention estimation,
it has been shown that the parietal region is also responsible
for attention mechanism [42].

VI. CONCLUSION

In this work, we present a framework aiming to estimate
the attention state from EEG signals during specific tasks. We
propose a novel approach to handle these signals based on a
three-fold information representation based on the frequential,
temporal and spatial features. Moreover, a novel Transformer
inspired architecture for EEG processing has been presented.
This last allows extracting the sequential information from the
EEG feature maps in each of the three dimensions mentioned
above. To validate this new method, the framework has been
trained and tested on public datasets assessing the attention
state. The results are encouraging and outperform the state
of the art approaches. The proposed models can be useful for
different applications such as attention assessment for subjects
with ADHD to detect and help to reduce their symptoms;
another application could be a vigilance estimator during
driving to alert the driver in case of drowsiness. In further
works, we want to explore other EEG datasets to investigate
the feasibility of a large framework that can be applied to
various fields, more the application of the model in a real-life
application will be considered. Over the next years, we think
that the use of EEG and ML models will be helpful to help
in diagnosis and treatment, and to prevent accidents.
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