Towards the use of self-supervised learning for EEG analysis

victor.delvigne@imt-nord-europe.fr - victor.delvigne@umons.ac.be http://vdelv.github.io

UNIVERSITY OF CENTRAL FLORIDA

Context

• Joint PhD

IMT Nord Europe (FR) - University of Mons (BE)

- Pluridisciplinary research project
 Studying attention state in VR (Virtual Reality) with biomedical signals
- Collaboration with University of Central Florida
 Center for Research in Computer Vision (CRCV)

Classification with Supervised Learning

Challenges & Limitation of Supervised Learning

- Learning with fewer labeled samples?
- Learning to reason?

(a) Texture	image
81.4%	Indian elephant
10.3%	indri
8.2%	black swan

(b) Content image
71.1% tabby cat
17.3% grey fox
3.3% Siamese cat

(c) Texture-shape cue conflict
 63.9% Indian elephant
 26.4% indri
 9.6% black swan

Image taken from Geirhos, Robert, et al. "ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness." ICLR 2019.

Challenges & Limitation of Supervised Learning

- Learning with fewer labeled samples?
- Learning to reason?

"How do human and	animal babies learn?"	
-------------------	-----------------------	--

Y. Le Cun (Facebook Al Research)

(a) Texture image (b) Conten		ent image (c) Texture		e-shape cue conflict	
81.4%	Indian elephant	71.1%	tabby cat	63.9%	Indian elephant
10.3%	indri	17.3%	grey fox	26.4%	indri
8.2%	black swan	3.3%	Siamese cat	9.6%	black swan

Image taken from Geirhos, Robert, et al. "ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness." ICLR 2019.

Self-Supervised Learning

"Learning how to process instead of how to classify images"

SimCLR - Google ICML 2021.

SwAV - Facebook Neurips 2020.

Self-Supervised Learning

- Electrical activity of the brain
- Temporal series
- Electrodes placed on the scalp

Example of signal from a single electrode.

Extracting features from EEG representing

- Statistical information
- Temporal information

Example of signal from a single electrode.

Example of extracted feature of signal from a single electrode.

Extracting features from EEG representing

• Statisti Limitations:

- Tempc
- Freque
- etc

- Although from scientific knowledge, not generalisable
- Not taking into account all the signal aspect (spatial, spectral and temporal)
- Not working for each paradigm
- ... seems naïve with the advanced in Machine Learning

Example of signal from a single electrode.

Example of extracted feature of signal from a single electrode.

re

0.8

1.0

Several models consider the raw signals instead of extracted features based on

- CNN
- RNN
- GANs
- Autoencoders
- etc

... but trained in most of the case with supervised learning

Several models consider the raw signals instead of extracted features based on

CNN

RNN

etc

- Limitations:
- GANs
 - Knowledge not transferable from a method to another
 - Autoen Not working with smaller dataset
- No way to ensure that the model is actually learning, which is a **necessity** (cf. issues with Pneumonia) in medical domain ... but traine
 - Huge set of data unused (systematic EEG recordings)

- Considering a general pipeline reusable for every type of EEG segments
- Trained on a huge corpus of EEG signals
- Trained to proceed specific self-supervised tasks
 - Time dependent
 - Frequency dependent
 - Spatial dependent
- Helping for classification task on smaller datasets

1. Considering a general pipeline reusable for every type of EEG segments

2. Trained on a huge corpus of EEG signals

- "The Temple University Hospital EEG Data Corpus"¹ with set of unlabeled/poorly labeled signals of **more than 1 years** of recordings in total
- Different types of events recorded listed on the dataset, e.g. seizure, noise, etc.
- Corpus very diverse covering a lot of possible situations/context

3. Trained to proceed specific self-supervised tasks

Time dependent - Jigsaw EEG

Aims at reconstructing the signal

- Finding the right order

 (i.e. one combination correspond to one of the possible combinations)
 ⇒ Cross Entropy Loss
- Promoting the retrieval of sequence trend e.g. if the swap order is [3, 0, 4, 2, 1], predicting is a [0, 4, 2, 1, 3] is a similar sequence.
 - ⇒ Similarity Loss

3. Trained to proceed specific self-supervised tasks

Frequency dependent

- Attract signals and its corresponding spectral generated from the same electrode
- Repeal signals and reconstruction of same electrodes signals from other batches

⇒ Contrastive Loss

3. Trained to proceed specific self-supervised tasks

Spatial dependent

- Attract neighbors signals proportionally to the electrodes distance
- Repeal signals from other batches with the opposite process
 - ⇒ Contrastive Loss

In brief

4. Helping for classification task on smaller datasets

After focusing on the pretext tasks, the downstream tasks will be tested on

- Classification of motor movements
 - BCI dataset (9 participants / ~ 6 hours)
 - MMI dataset (109 participants / ~ 40 hours)
- Sleeping stage classification
 - SSC dataset (78 participants / ~ 1500 hours)

Results

Dataset	Supervised Standalone	Dual Supervised and Self-Supervised with TUEG				
		Temporal	Spectral	Spatial	Combined	
BCI 4 classes	32.81/1.26	41.54/3.7	42.82/4.1	39.50/5.1	43.96/5.2	
MMI 3 classes	66.92/5.68	70.66/7.04	72.54/2.5	68.03/7.68	74.42/4.9	
SSC 5 classes	38.59/8.34	42.80/6.62	43.37/6.39	40.72/6.08	45.28/6.04	

Discussion

- Self-Supervised Learning promotes better results
- Spatial tasks seems to perform poorly compared to other tasks
- Knowledge transfer from a dataset to another

Conclusion

- Baseline and preliminary works
- *"Hot Topic"* for the moment
- Existing methods in computer vision can be transposed
- Other tasks could also be considered

References

- 1. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A., & Brendel, W. (2018). ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231.
- 2. Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." *International conference on machine learning*. PMLR, 2020.
- 3. Caron, Mathilde, et al. "Unsupervised learning of visual features by contrasting cluster assignments." *Advances in Neural Information Processing Systems* 33 (2020): 9912-9924.
- 4. Obeid, I., & Picone, J. (2016). The temple university hospital EEG data corpus. *Frontiers in neuroscience*, 10, 196.
- 5. Schneider, S., Baevski, A., Collobert, R., & Auli, M. (2019). wav2vec: Unsupervised pre-training for speech recognition. *arXiv* preprint arXiv:1904.05862.
- 6. Banville, Hubert, et al. "Uncovering the structure of clinical EEG signals with self-supervised learning." *Journal of Neural Engineering* 18.4 (2021): 046020.
- 7. Hsu, Wei-Ning, et al. "Hubert: Self-supervised speech representation learning by masked prediction of hidden units." *IEEE/ACM Transactions on Audio, Speech, and Language Processing* 29 (2021): 3451-3460.

Towards the use of self-supervised learning for EEG analysis

Thank you for your attention !

Towards the use of self-supervised learning for EEG analysis

victor.delvigne@imt-nord-europe.fr - victor.delvigne@umons.ac.be http://vdelv.github.io

UNIVERSITY OF CENTRAL FLORIDA