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7 FIDMAG Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain.
8 Mental Health Research Networking Center (CIBERSAM), Madrid, Spain.

9 University of Lausanne, Lausanne, Switzerland.

Abstract. Diffusion MRI (DW-MRI) allows for the detailed exploration
of the brain white matter microstructure, with applications in both re-
search and the clinic. However, state-of-the-art methods for microstruc-
ture estimation suffer from known limitations, such as the overestimation
of the mean axon diameter, and the infeasibility of fitting diameter dis-
tributions. In this study, we propose to eschew current modeling-based
approaches in favor of a novel, simulation-assisted machine learning ap-
proach. In particular, we train machine learning (ML) algorithms on a
large dataset of simulated diffusion MRI signals from white matter re-
gions with different axon diameter distributions and packing densities.
We show, on synthetic data, that the trained models provide an accurate
and efficient estimation of microstructural parameters in-silico and from
DW-MRI data with moderately high b-values (4000s/mm2). Further, we
show, on in-vivo data, that the estimators trained from simulations can
provide parameter estimates which are close to the values expected from
histology.

Keywords: Diffusion MRI · Machine Learning · Monte-Carlo Simula-
tions.

1 Introduction/Related Work

Diffusion-Weighted MRI (DW-MRI) provides a non-invasive, in-vivo technique
for investigating the micro-anatomy of brain tissue. As the DW-MRI signal de-
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pends on the self-diffusion process of water molecules within the intra- and extra-
axonal spaces, it can be used to estimate the local, microstructural properties of
cells via inverse modeling. A number of microstructure parameters of the white
matter fibres such as the statistical distribution of axon diameters (mean and
variance) and orientations, as well as the volume fraction occupied by axons
(i.e., fibre density) can be inferred from DW-MRI signals through the inversion
of complex, non-linear models that require time consuming optimization algo-
rithms. Some examples of state-of-the-art models are AxCaliber [3] and ActiveAx
[1], which are used to estimate the axon diameter distribution, and CHARMED
[2] and NODDI [15] to estimate the fibre orientations and their volume fractions.
To make the fitting more stable, previous models rely on different approxima-
tions that require different assumptions. One common assumption is to model
the signal from the white matter by a sum of signals from two independent
compartments: the intra- and extra-axonal spaces. Other assumptions include
modeling axons as perfect, impermeable cylinders. There are some well-known
issues with these model-based approaches, including difficulty in separating sig-
nals into compartments, model oversimplification, degeneracy, and instability
during fitting [7, 15, 14].

In this study, we explored the feasibility of bypassing some of the limitations
of the current inverse models by developing an emerging approach that is based
on using DW-MRI simulations as a tool for performing forward modeling [12], [9].
In our approach, we first created a large and detailed dataset of numerical white
matter phantoms with varying geometric properties of interest, such as the mean
and standard deviation of axon diameters and the axon density. We then gen-
erated the DW-MRI signals of these phantoms using a DW-MRI Monte-Carlo
simulator [11]. We trained two different machine learning algorithms, i.e., ran-
dom forest and multi-layer perceptron, to map the simulated signals with and
without handcrafted features, to the microstructural parameters. The learned
models were then applied to both synthetic and in-vivo brain data.

2 Methods

2.1 Dataset Generation

Figure 1 shows the structure of our framework from the dataset generation to the
accuracy evaluation. In generating the dataset, we express the DW-MRI signal
in the brain white matter (WM) as the sum of the signals from the intra-axonal
Sint and extra-axonal Sext compartments, weighted by their relaxation-weighted
volume fractions icvf and ecvf = 1 − icvf , where icvf + ecvf = 1:

S = (icvf)Sint + (1 − icvf)Sext (1)

The intra-axonal space represents the axons which we model as straight and
parallel cylinders, and the extra-axonal space corresponds to the space outside
the axons, including the extra-axonal matrix, glial cells, and cerebrospinal fluid,
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etc. We further assume that within a bundle, the axon diameters follow a Gamma
distribution [13], with different bundles having different means and standard
deviations.

Fig. 1: Framework pipeline

A large dataset of WM phantoms with different geometrical properties was
generated by parameterising the intra-axonal space with the volume fraction
icvf as well as the mean µ and standard deviation σ of a Gamma distribu-
tion. These parameters were varied according to the realistic values reported in
Table 1. A packing algorithm that generates axon geometries matching these
predefined parameters was implemented similar to [6]. Then, simulated DW-
MRI signals for each one of these phantoms were generated using a DW-MRI
Monte-Carlo simulator [11] with a specific acquisition protocol consisting of 2
shells with b-values equals to 1000s/mm2 and 4000s/mm2; δ = 7ms and echo
time (TE) = 80ms, with an isotropic voxel resolution of 2mm. For each shell,
the ∆ time was varied as follows, ∆ = 17.3, 30, 42, 55ms. A total of 30 uniformly
sampled directions in the sphere where used per different ∆ time for the shell
with b-value = 1000s/mm2 and 60 directions for the b-value = 4000s/mm2.
In addition, to include some uncertainty related to the main fiber orientation,
4 additional signals were generated for each phantom by rotating the original
signal by 5 degrees in 4 directions around the mean fiber direction. We chose this
dispersion by computing the variance of the main fiber direction in a region of
interest in the CC from the in-vivo data. The resulting substrates were removed
if the packed distribution were not close enough to the desired distribution of
diameters, or couldn’t reach the desired ICVF. Figure 2 shows an example of
a generated distribution, as well as the directions used to rotate the phantom’s
main direction. In total, the final database consisted of 82,400 white matter
phantoms and their DW-MRI signals, which were obtained after generating dif-
ferent realizations of each of the 1824 combinations of icvf , µ and σ (Table1)
after pruning.

The in-vivo data were acquired using a 3T Connectome scanner equipped
with 300mT/m diffusion gradients and using the same imaging parameters em-
ployed to generate the synthetic dataset. The same healthy volunteer subject was
scanned 5 times to test the robustness of the method to multiple repetitions.
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Parameters Values

µ
{0.2, 0.3, 0.5, 0.66, 0.81, 0.97, 1.12, 1.28, 1.44, 1.59,

1.75, 1.91, 2.06, 2.22, 2.34, 2.53, 2.69, 2.84, 3 }
σ { 0.1, 0.3, 0.5, 1, 1.5, 2, 2.5, 3 }

icvf
{0.35, 0.4, 0.45, 0.5, 0.53, 0.57,
0.6, 0.63, 0.67, 0.7, 0.73, 0.75 }

Table 1: Table of values used to generate all the substrates for the mean radius
(µ), the standard deviation of the distribution (σ), and the ICVF. A total of
1824 combinations were produced.

In-silico phantom and distribution of
diameters

Angular dispersion dirs.

Fig. 2: From left to right, an example of a generated phantom, the resulting
distribution of axons after fitting, and the directions used to rotate the main
fiber direction to simulate minor angular dispersion.

2.2 Machine Learning

To learn the mapping from simulated signals to microstructural parameters, we
implemented three different approaches, relying on either handcrafted features
or the raw diffusion signal. To create the handcrafted features, the diffusion
signal vector was separated into 8 parts, each one corresponding to a different
shell with a specific combination of the parameters of the imaging protocol used,
i.e., ∆, δ and G. Then, for each of these, a Principal Component Analysis was
carried out and the first 3 components were selected, which explained more than
98% of the signal variance. In addition, the fractional anisotropy (FA) and the
mean diffusivity (MD) were computed and concatenated to the feature vector.
The total feature vector signal consisted of 8 ∗ 3 + 2 = 26 normalized features.

First, we trained a random forest (RF) regressor using the handcrafted fea-
tures described above. A total of 100 estimator trees with a maximum depth of
17 were used. The random forest parameters were optimized using the Bootstrap
aggregation method.

Second, a multi-layer perceptron (MLP) was trained using the same hand-
crafted features with the following architecture: four dense hidden layers with
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129, 32, 16 and 3 units respectively. We used a rectified linear unit (Relu) as the
activation function for all layers, with dropout after the first and second layers
with probability 0.01. The third layer was regularized using L2-based kernel and
bias regularization with a coefficient of 0.01. We used the L2 loss between the
predicted and ground truth parameters as the cost function. Finally, Adam op-
timizer was employed to train the network for 100 epochs with a batch size of
10. We refer to this method as MLP-feat on the rest of the paper.

Third, we trained an MLP using the DW-MRI signal directly, with no feature
extraction. The architecture consists of 6 hidden layers with 400, 200, 100, 56, 16
and 3 neurons respectively. The fifth layer is regularized as in the MLP above.
Other training details are identical to those used in the MLP above. We refer to
this method as MLP-raw to differentiate it from the previous one trained with
handcrafted features.

In this study, 80% of the dataset was used for training and validation, while
20% was held-out for testing; 10-fold cross-validation to mitigate overfitting was
performed. The three described approaches were tested on both, the held-out
synthetic data and five in-vivo DW-MRI images masked into the CC. As a base-
line for the in-vivo data, we compare these results with those of the AMICO [4]
implementation of ActiveAx [1], using the default regularization parameters and
dictionary.

3 Results and Discussion

Figure 3 shows the microstructure parameters estimated by the three ML al-
gorithms from synthetic data. Our main finding is that they are able to ac-
curately estimate both the mean and standard deviation of the axon diameter
distributions even for diameters much smaller than those estimated in previous
studies (i.e., 2um), and using an acquisition protocol employing b-values lower
than the conventional ones used for diameter estimation [1, 4]. To explain why
the proposed ML techniques can improve the estimation of axons with smaller
diameters, it is important to remember that the model-based approaches de-
termine the axon diameter entirely from an intra-axonal model, as the signal
from the extra-axonal space is difficult to relate analytically to the underlying
microstructure parameters. The limited diffusion contrast of the DW-MRI sig-
nal from the intra-axonal space along the direction perpendicular to the fibers
hampers the estimation of axons with small diameters. In contrast, applying
ML techniques to the whole signal allows finding hidden non-trivial and non-
linear relationships between the microstructure parameters and the DW-MRI
signal from both the intra- and the extra-axonal spaces. As the properties of
the diffusion process in the extra-axonal space (i.e., mean displacement length,
tortuosity, time-dependent diffusion) are highly influenced by the microstructure
features of the intra-axonal space, the ML algorithms can exploit this additional
information. Another important factor is that, by defining a specific distribution
of axon diameters in our forward model, the ML algorithms could predict the full
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distribution using only the information from the right-tail of the distribution,
which is not affected by the contrast/resolution problem mentioned before.

Cross validation MAE

RF feat. MLP feat. MLP raw

0.028 0.070 0.134

Table 2: Mean absolute error (MAE) on the cross validation dataset for the three
trained classifiers: RF, MLP trained with feature vectors, and MLP trained with
the raw signal.

Table 2 shows the mean absolute error of the three parameters estimated on
the noise-free test dataset. From Figure 3 and Table 2, we can see that the RF
regressor has the best accuracy for all three parameters, with ICVF the most
difficult parameter to estimate. Both MLP methods had good accuracy during
training but lower accuracy on the test dataset than the RF regressor.

Figure 5 shows the estimated mean diameter (mD) maps for two arbitrarily
selected scans from the in-vivo data, in the same anatomical cross-section for
the three methods. For each ML regressor, the parameter estimates are quite
consistent over the five images used; that is, the values and the anatomical
locations of small or large mean diameters are similar across scans. In addition,
we show the axon’s diameter maps computed with AMICO-ActiveAx, which
are notably higher than those from the ML methods. Is important to notice
however that the used protocol is far from idoneous for the former method—
which requires b-values as high as b=9,000s/mm2 in ex-vivo conditions [5] to
estimate mean axon diameters below 2um—and thus, such over-estimation is
expected.

Figure 4 depicts the histograms of the estimated mean diameters. There is
a noticeable variability between the parameter estimates of two different regres-
sors. This is important as this lack of consensus between regressors implies that
at least one must be biased and shows how three different estimators, with simi-
lar performance and accuracy in in-silico data, can estimate remarkably different
distributions in in-vivo data. This is likely to be and effect of several compart-
ments not included in our training data: axonal tortuosity and diameter changes,
or even T2 relaxation or artifacts effects. Therefore, this study will benefit of
including such effects during the training. Or the use of more advanced machine
learning models [10]. Notably however, while all ML models predicted mean di-
ameters with magnitudes close—but still higher—from the ones extracted from
histology, the trend in mean diameter on the genu, truncus and splenium of
the CC predicted by the RF regressor (i.e., the optimal one in synthetic data)
matches that from a previous study on electron-microscopy for the distribution
of axon diameters in cortical white matter [8].
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ML Regressor Parameter Estimates

Mean Diameter Standard Deviation ICVF

Fig. 3: Estimates of the trained regressors on the validation dataset.
From top to bottom, results for the Random Forest (top), MLP trained with
hand crafted features (middle row), and the MLP trained with the raw signal
(bottom). From left to right, ground truth vs the estimated parameters on the
validation dataset for the mean diameter, the standard deviation, and the ICVF
respectively.

4 Conclusions

The main focus of this work is the introduction of a emerging simulation-based
technique for the microstructural parameter estimation; from the construction
of a large dataset of realistic numerical phantoms to training machine learning
algorithms on the corresponding simulated signals. A comprehensive dataset ac-
counting for a wide variety of parameters characterizing axon packing and size,
as well as small angular dispersion mimicking that which occurs in the CC was
generated. We demonstrated that machine learning models with and without
handcrafted features can accurately recover the mean and standard deviation of
the axon diameter distribution on synthetic data and from DW-MRI data with
moderately high b-values (4000s/mm2). The proposed approach allowed us to
estimate, for the first time, the number-weighted distribution of axon diame-
ters, which cannot be estimated with previous DW-MRI modeling techniques.
As this is the distribution conventionally reported in histological studies, this
study may help to fill the gap between in-vivo DW-MRI and postmortem histol-



8 Rafael-Patino et al.

CC estimated mean diameters

RF regressor MLP feat. MLP raw

Fig. 4: Joint histogram of the estimated mean diameters in the segmented
mask of the CC across 5 scans for (from left to right) the RF regressor, MLP-feat
and the MLP-raw. Each histogram was computed using the combined estimates
of the 5 in-vivo scans.

ogy. Furthermore, once trained, machine learning models require a few seconds
of computation time for estimating the microstructure parameters in the whole-
brain white matter. Finally, the in-vivo results show consistent trends and values
for all 5 subject scans with the same ML model, however, there are qualitative
differences between the different models that should be explored in future stud-
ies. Our findings show that values reported in the CC for all ML models are
close to those found in histology, with the RF regressor further replicating the
expected spatial trend in mean diameter [8]. It is important to mention, however,
that in this work a simplified model of the CC microstructure is employed by
considering a 2 compartment model which assumes that axons are completely
straight cylinders, without micro-dispersion along the axons. Nevertheless, since
it is straightforward to generate more realistic phantoms (e.g. axons with undu-
lations and angular dispersion) and simulate the corresponding DW-MRI signals
using state-of-the-art MC simulators, both limitations can be addressed in the
future by generating more complex axon configurations without significantly
modifying the machine learning models and related parameters. Future in-silico
validations will be conducted to evaluate the robustness of the method as a
function of the signal-to-noise ratio and acquisition protocol.
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In-vivo Random forest mD predictions

In-vivo MLP-feat mD predictions

In-vivo MLP-raw mD predictions

In-vivo AMICO-ActiveAx mD predictions

Fig. 5: Midsagittal plane of the estimation maps for two subjects (showed from
posterior to anterior). The colorbars where adjusted per model to highlight the
regions with higher and lower values. In one of the MLP-raw predictions it can
be notice the presence of a notorious outlayer values in regions voxels outside
the CC.
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